Adaptive Hyper-Feature Fusion for Visual Tracking
نویسندگان
چکیده
منابع مشابه
A hierarchical feature fusion framework for adaptive visual tracking
a r t i c l e i n f o A Hierarchical Model Fusion (HMF) framework for object tracking in video sequences is presented. The Bayesian tracking equations are extended to account for multiple object models. With these equations as a basis a particle filter algorithm is developed to efficiently cope with the multi-modal distributions emerging from cluttered scenes. The update of each object model ta...
متن کاملRobust Visual Tracking Based on Feature Fusion ?
To drive computational visual tracking toward more robust outputs, we need a more accurate and adaptive feature representation of target. In this paper, we propose a tracking algorithm using new multifeature statistical observation model based on the particle filter framework. Four complementary features are described with histograms and fused in a novel way. We demonstrate how to establish obs...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملAdaptive Feature Extraction with Haar-like Features for Visual Tracking
We propose an adaptive feature extraction technique to improve the performance of visual tracking algorithm. The goal is achieved by the integration of Haar-like features in ensemble tracking [1] framework. Our experiment shows that the proposed algorithm performs well even in case of various illumination changes and short occlusions.
متن کاملAdaptive Constraints for Feature Tracking
In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2986157